Today's Needs

- Periodic Table
- Whiteboard \& Pen
- Calculator
- Notebook \& pen/pencil

On Your Whiteboard

If your recipe for cornbread calls for 1.5 cups of flour to every 1 cup of cornmeal, how many cups of flour will you need if you want to use up the 3 cups of cornmeal you have?

Stoichiometry Part 1 Grams to Grams

Chemistry
Unit 8:
Stoichiometery
Lecture \#1

Objectives

- Define and determine mole ratios from a balanced equation
- Use balanced chemical equations to determine the amount of a substance needed or produced from a given amount of another substance

Vocabulary

- Stoichiometry: Greek for "measuring elements"
- Proportions: comparative relationship between items (ratios)
- Mole Ratio: Ratio of one substance to another in a balanced chemical equation (comes from coefficients)

Big Idea

Balanced Equations are like "recipes"

- So long as we keep the proportions the same, we can "change" the amounts without changing the recipe
- In a balanced chemical equation, the coefficients give us the proportions
- As long as they remain proportional, the equation stays balanced!

Significance of a Balanced Equation

- The Coefficients give us the proportions (ratios)
- So long as the coefficients remain proportional, the equation stays balanced

Altering Chemical "Recipes"

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

What if I change the "2" in front of H_{2} to a "4" What if I change the " 1 " in front of O_{2} to a " 6 " What if the "1" in front of O_{2} was " $6.022 \times 10^{23 "}$ What if the "2" in front of $\mathrm{H}_{2} \mathrm{O}$ was 14 L

How many moles of H_{2} will I need if I want to use up 15 moles of O_{2} ?

Mole Ratios

$2 \mathrm{Fe}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Cu}$

Ratio of Fe to CuSO_{4} :
Ratio of Fe to $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$:
Ratio of Fe to Cu
$\mathrm{CuSO}_{4} / \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}:$
$\mathrm{CuSO}_{4} / \mathrm{Cu}:$
$\mathrm{Fe} 2\left(\mathrm{SO}_{4}\right)_{3} / \mathrm{Cu}$:

Volume

(L)

Mass

Mass

(g)

Volume
(L)

Particles
(atoms, formula
units or
molecules)

Particles
 (atoms, formula
 units or
 molecules)

Steps to Stoichiometry

1. Make sure Equation is Balanced
2. Determine given substance, AND unit the unit helps you find your starting spot
3. Determine the wanted substance AND unit the unit helps you find your ending spot
4. Plan your "route". Each leg needs a conversion factor (equality)
5. Do the math!

©•• Example

If 10.1 g of Iron are added to a solution of copper (II) sulfate, how much solid copper will form?
$2 \mathrm{Fe}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Cu}$

․ㅡㄴ•• Guided Practice

How much iron is needed to produce 15.0 g of copper when excess copper (II) sulfate is present?

$$
2 \mathrm{Fe}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Cu}
$$

How many grams of sodium chloride are produced fro 7.5 g of sodium and excess chloride?
$2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$

Write your summary and questions now

