Today's Needs

- Periodic Table
- Whiteboard & Pen

- Calculator
- Notebook & pen/pencil

On Your Whiteboard

If your recipe for cornbread calls for 1.5 cups of flour to every 1 cup of cornmeal, how many cups of flour will you need if you want to use up the 3 cups of cornmeal you have?

Stoichiometry Part 1 Grams to Grams

Chemistry
Unit 8:
Stoichiometery
Lecture #1

Objectives

Define and determine mole ratios from a balanced equation

 Use balanced chemical equations to determine the amount of a substance needed or produced from a given amount of another substance

Vocabulary

Stoichiometry: Greek for "measuring elements"

 Proportions: comparative relationship between items (ratios)

 Mole Ratio: Ratio of one substance to another in a balanced chemical equation (comes from coefficients)

Big Idea

Balanced Equations are like "recipes"

- So long as we keep the <u>proportions</u> the same, we can "change" the amounts <u>without</u> <u>changing the recipe</u>
- In a balanced chemical equation, the coefficients give us the proportions
- As long as they remain proportional, the equation stays balanced!

Significance of a Balanced Equation

 The Coefficients give us the proportions (ratios)

 So long as the coefficients remain proportional, the equation stays balanced

Altering Chemical "Recipes"

$$2 H_2 + O_2 \rightarrow 2 H_2O$$

What if I change the "2" in front of H_2 to a "4" What if I change the "1" in front of O_2 to a "6" What if the "1" in front of O_2 was "6.022x10²³" What if the "2" in front of H_2O was 14 L

How many moles of H_2 will I need if I want to use up 15 moles of O_2 ?

Mole Ratios

2 Fe + 3 CuSO₄
$$\rightarrow$$
 Fe₂(SO₄)₃ + 3 Cu

Ratio of Fe to CuSO₄:

Ratio of Fe to $Fe_2(SO_4)_3$:

Ratio of Fe to Cu

 $CuSO_4 / Fe_2(SO_4)_3$:

CuSO₄ / Cu:

 $Fe2(SO_4)_3$ / Cu:

Steps to Stoichiometry

- 1. Make sure Equation is Balanced
- 2. Determine given substance, AND <u>unit</u> the unit helps you find your starting spot
- 3. Determine the wanted substance AND <u>unit</u> the unit helps you find your ending spot
- 4. Plan your "route". Each leg needs a conversion factor (equality)
- 5. Do the math!

Example

If 10.1 g of Iron are added to a solution of copper (II) sulfate, how much solid copper will form?

2 Fe + 3 CuSO₄ \rightarrow Fe₂(SO₄)₃ + 3 Cu

Guided Practice

How much iron is needed to produce 15.0 g of copper when excess copper (II) sulfate is present?

2 Fe + 3 CuSO₄ \rightarrow Fe₂(SO₄)₃ + 3 Cu

Independent Practice

How many grams of sodium chloride are produced fro 7.5 g of sodium and excess chloride?

 $2 \text{ Na} + \text{Cl}_2 \rightarrow 2 \text{ NaCl}$

Write your summary and questions now